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The PSMG Multiscale Méthod for an Anisotropic Problem*

Yi-Hua Chang , Oliver A. McBryan

Computer Science Department
University of Colorado

Boulder, CO 80309-0430

Abstract
The PSMG method provides an efficient solution method for elliptic PDE in the
theoretically interesting limit where the number of processors approaches the number
of discretization grid points. In this paper we show that the main features of PSMG
may be extended from the Poisson equation on a square grid to anisotropic equations of
similar type. Convergence rates of .12 or less per single-relaxation iteration are achieved
for anisotropy coefficients ranging from 1 to over 10°.

1 Introduction

This paper applies the PSMG multiscale method to solve an anisotropic equation. The
PSMG multiscale algorithm [1,2,3] was introduced in 1986 by Frederickson and McBryan,
as an efficient PDE solver for massively parallel architectures. Previous papers on PSMG
have applied the method only to the Poisson equation on a uniform square grid. As is
typical for point relaxation multigrid, PSMG will give very poor convergence if applied to
an anisotropic equation such as:

02U 0%U
(1) -a—a—;z-—b—a—?;;zf(w,y),

where a and b are positive constants with ratio significantly different from 1. For simplicity
we will assume periodic boundary conditions.
Without loss of generality, we may transform equation (1) to the equation:

2 2
) ~ G~ <y = Jw),
where 1 < € < 0o . We will refer to € as the anisotropy parameter. We consider the equation
(2) as our working model equation. We wish to solve (2) with periodic boundary conditions
on a uniform grid. We use semi-coarsening methods, i.e. we descend to a coarse grid
in one direction at a time in order to effectively cancel the anisotropy introduced by the €
term. We call these methods PSMGS and PSMGSS. The PSMGS method utilizes coarser
grids only in the y direction, and can handle cases where 4 < ¢ < oo . The PSMGSS

method alternately semi-coarsens in the x and y directions, and can handle cases where
1<e<4.

*Research supported in part by AFOSR grant AFOSR-89-0422 and by NSF Grand Challenges
Applications Grant ASC-9217394.
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Throughout this paper we use the PSMG definitions and notations which are described
in [1-3], as well as those for the regular Multigrid method, for example as in [4,5]. There
are two parts to the description of our PSMG algorithms, corresponding to the grid
space domain and the frequency domain. In the grid space domain we describe the
implementation required on a computer in order to solve the equations. In the Fourier mode
domain we describe the analysis required to get optimum coefficients for smoothing and
interpolation. Section 2 presents the grid space analysis while section 3 presents the complex
frequency domain analysis and choice of optimal coefficients. In section 4, we describe the
convergence rates obtained for an hybrid solver based on PSMGS and PSMGSS.

2 Grid Space Domain

~ We will discretize equation (2) on a rectangle of sides X, Y by introducing an n x n periodic
rectangular grid. The generalization to an m X n grid is trivial. For simplicity we assume
that n is a power of 2: n = 2L and we therefore denote the grid by G@), Using second
order finite differences on G(F), the equation (2) becomes:

ANy = f

where the operator AF) has the usual 5-point form, and we include the superscript L to
indicate its dependence on the grid domain.

The PSMG method requires an interpolation operator ) and a smoothing operator Z
in addition to the difference operator A. Each of these will be chosen to involve only a
small stencil of grid points, as with the 5-point A. Furthermore, since PSMG is a multiscale
method, we will introduce a series of operators Aladyil) QUadyil) and ZUzlyil) 3]l defined
on GB) but differing in their length scales - the integer distance offsets used in computing
their stencils. The operators with superscript (I,l,; L) have scale lengths of d(l;) in the
x direction and d(l,) in the y direction respectively, where d(I) = 2L=!. These operators
connect points that are a separation d(l;), d(l,) apart on the periodic grid G,

All of these operators may be represented conveniently in the familiar “star” notation.
In this notation we have:
- p12)2 1 (zily;L)
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where AY) = d)X/n, hg(f) = d(1)Y/n) and where the superscript (5, l,; L) on the stencil
tensor is a reminder that the operator is defined on the grid G&) and uses scale distances
d(l;) and d(l,) in the x and y directions respectively. The difference operator for our
discretization of (2) is then simply the operator AL) = ALLL),

In the PSMGS and PSMGSS method we will use only a 5-point star Q for the
interpolation operator:

(lz)ly:L)

(3) Q(l”’ly;L) = @1 Q@ ¢ 3



and a 1-point star (i.e. diagonal) Z for a smoothing operator:

(Iz)ly;L)
20

\ Iodyil)
(4) ZUaidyil) = . 5
772 + € 70y)z
z y

The parameters z; and ¢; will be chosen by optimization as described in section 3. We will
define the PSMGS and PSMGSS methods in sections 2.1 and 2.2 respectively by defining
the PSMG iteration operation M() in terms of the operators A, Q and Z. Here M) is
the error reduction operator representing a complete PSMG cycle, defined in terms of the
change in the error e of an approximate solution by: e = MWPe, M) is defined by a
recurrence equation that is given for PSMGS in section 2.1 and for PSMGSS in section 2.2.
The PSMG convergence rate, y, is defined by:

(5) po=supu® , p = MO

L
and || . || denotes the operator norm on the space of grid-functions over G(F),
2.1 PSMGS:

In the PSMGS method, we semi-coarsen only in the y direction. As seen from the formula
for AUWGL) | the effect of the semicoarsening is to divide € by 4 for each level of semi-
coarsening. We will continue coarsening until we reach either level Ly, = 0 or a level
Lpin = Lyin(€) which is the first level (i.e. integer) such that L,,;, > L—logs(€), whichever
comes first. If L,;;, = 0 then we complete solution at that level by using one-dimensional
solvers in the x direction. If L,,;, > 0 then the effective anisotropy coefficient is close to 1
- i.e. in the range [1,4] - and it is more appropriate to switch to a solver for near isotropic
equations such as the PSMGSS method of the following section, or possibly the original
PSMG method if the effective anisotropy is exactly 1.

We use a multiscale method as in PSMG, as opposed to a multigrid method. Thus all
operators are defined with domain G, The basic steps involved at level I, 0 < I < L, for
the solution of ALVU = f, starting with an initial guess u, are described by:

Algorithm PSMGS(L,!,u, f):

If | = Liyin, exactly solve ALEL) = f. Otherwise

Compute residual: r = f — ALEL)y,

Project residual to coarse grid: » = r (trivial injection).

Solve coarse grid residual equation using PSMG: e = PSMGS(L,l—-1,0,r).
Interpolate to fine grid: ¢/ = Qhlle,

Apply a relaxation: e’ = (I — ZEHD ALEL) ! 4 Z(LED)p,

Compute and return the new solution: u"” = u + €”.

R

To solve the original equation we would call PSMGS(L,L,u,f). The recurrence formula
for the error reduction operator M(X) in equation (5) is similar to PSMG (see [1]) and can
be expressed in the following recurrence equation:

MEED) (I _ Z(L,I;L)A(L,I;L)) [I _ A(L,t;L)Q(L,z;L)A(L,l—l;L)—l (I _ M(L,I—I;L))} :



The required level L error reduction operator is then given by: M) = M(LLiL),

The exact solution required on level L,y,;, consists of performing a 1-d solution in the z
direction at each grid point. Because the original PDE and its discretization are singular
due to translation invariance (assuming periodic boundary conditions), the exact solution
required will encounter an indeterminacy, usually exhibited as a divide by zero. A simple
resolution is to use a least squares solution. Indeed any approximate solver may be used
at this point, with convergence rates depending on the solver used.

2.2 PSMGSS:

In the PSMGSS method we descend to a coarsest grid level in compound steps in which
we coarsen by one level in the y direction, and then by one level in the x direction. As
seen from the formula for AU=!L) the effect of the first semicoarsening is to divide ¢
by 4 while the second semi-coarsening then multiplies it by 4. So the PSMGSS method
effectively maintains the value of ¢ as it descends the levels in steps of two. It provides
a method similar in spirit to the original PSMG algorithms of [1-3], but allowing slightly
non-isotropic problems to be handled as easily as the exactly isotropic case. Since the
end-result of a PSMGS cycle is a near isotropic equation on the coarsest level L,,;,, one
could use PSMGSS as an appropriate solution method for level L.

We introduce separate interpolation and smoothing operators @z, Z; and @y, Z,
for the two semi-coarsening steps, each defined as in (3) and (4) but with coeflicients
oz Q15 422y 20z and oy 91y, 92y, 20y

Let d denote the coarsening direction which alternates between & and y. The basic
steps involved at level [, 0 < I < L, for the solution of AU = f, starting with an initial
guess u, are described by:

Algorithm PSMGSS(L, d, Iy, I, u, f):

If I, = Ly, exactly solve Alzlzil)y = . Otherwise

Compute residual: r = f — Alsduil)y,

Project residual to coarse grid: » = r (trivial injection). -

Define (d', l;,l;) as (y,l; — 1,1,) or (15,1, — 1) according as d = z or d = y.
Recursively solve coarse grid residual equation: e = PSMGSS(L,d,1;,1;,0,7).
Interpolate to fine grid: ¢’ = Q‘(il“”ly;L)e.

Apply a relaxation: ¢’ = (I — ng’l”;L)A(l”’y?L))e' + Z&l”’I”;L)r.

Compute and return the new solution: u” = u +€".

A i S A e o

To solve the original equation we would call PSMGSS(L,y,L,L,u,f). The recurrence
formula for PSMGSS is then more complicated than for PSMG:

ML) = (I _ Zéz,z;L)A(l,l;L)) * [I _ Z;(vl,l—l;L)Q?(Jl,l;L)A(l,l;L) _
( I— Za(:z,l—l;L) A(z,z-m)) A(I,I—I;L)Qg,l—l;L)Q?(ll,l;L) Al-11-1:L)71 ( I_ M(1—1,1~1;L))}
The error reduction operator is obtained from M@ = pMILiL),

The same comments apply to PSMGSS as were made for PSMGS about the need to take
care of indeterminacy on level L,,;, for translation invariant problems. The most convenient



solution is to use a least squares definition of the singular solution on the bottom level.

3 Frequency Domain and Optimization (Fourier Mode Analysis)
In order to get a fast convergence rate, we will optimize the choice of PSMGS and PSMGSS
coefficients in the interpolation and relaxation operators. This is most easily done in the
frequency domain using Fourier mode analysis. This procedure is similar to that for PSMG
although the operators are not the same.

For i = 1,2 we introduce for convenience the trigonometric quantities:

=) = cos (27kid()/n) .

1

where we have omitted an explicit reference to the implicit dependence on L contained in
d(l), and where the allowed frequencies are given by 0 < k; < n.

Using the discrete Fourier Transform on G(Y) we obtain the frequency representation
of the various operators as functions of the frequency parameters (k, k2):

ple)2

00 0 ooy 20 ),

P2

2 2
(lz)ly;L) — -
VA ¥ = Zo/ [hgﬂ”ﬂ + thy)z] ,

QU=w) = g5 + 2 gr2{"™) + gpa{®).

Thus all of these operators are reduced to multiplication by simple polynomials in the mgl).
The recurrence operator equations for MU=!sL) presented in sections 2.1 and 2.2 are now

simply recurrence function equations of the same form.

3.1 PSMGS:

From section 2.1 we see that the recurrence relation for ML) involves the possibly
singular quantity ACBDQEEL) ALI-5L)™" " There are singular points of AZI=1L)™" at
(z1,22) = (1,£1). The singularity at (1,-1) is actually cancelled by the corresponding zero
of ALHEL) at that point. We will choose Q so as to cancel the remaining singularity. This
requires the following constraint on the coefficients of Q):

G + 21 — 2q2 = 0.

The conventional PSMG constraint on Q(“4L) needed to ensure convergence near the origin
in frequency space, independently of grid size (see [1]), requires:

g + 2¢1 + 2¢2 = 1.
We may rewrite the above constraints as:
g = 025(1 —=2g0) , and ¢ = 0.25.

As discussed in detail in [2], we can use a numerical optimization procedure on equation
(5) to obtain the best choice of the remaining free coefficients go and zp, in order to get
the fastest convergence rate. The PSMGS algorithm depends on the coeflicient € of the
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anisotropy. We will continue coarsening until we reach a level L,y = Lpin(€) at which
the effective anisotropy coefficient is close to 1 - i.e. such that L — Ly, = logs(€). At that
point it is more appropriate to switch to a solver for near isotropic equations - for example
to the original PSMG solver. For the purpose of deriving optimal coefficients we will simply
assume that an exact solution is performed on the level L,.;y.

For each ¢, the optimization was in practice carried out for all levels L such that
Lpmin < L < 10. Based on these tests for large L we have found that the optimal coefficients
change very little when L is sufficiently large . As a representative example, the optimization
program for L = 6 produced coefficients for Q and Z as shown in Table 3.1.1.

l € l Lnin, l 20 l 9 l /"(L) l
4096 1 5005 | .5029 | .02872
3136 1 .5007 | .5036 | .03552
2704 1 .5008 | .5040 | .03937
2304 1 .5010 | .5045 | .04414
1764 | 1 5013 | .5053 | .05161
1206 | 1 .5020 | .5060 | .06431
1024 1 5033 | .5059 | .07934

784 2 .5026 | .5045 | .03525
576 2 5035 | .5056 | .04349
400 2 5052 | .5071 | .05435
256 2 5113 | .5079 | .07306
256 3 .5084 | .5050 | .02927
196 | 3 5113 | .5060 | .03482
144 3 .5164 | .5075 | .04296
100 3 .5262 | .5094 | .05263
64 3 .5404 | .5120 | .06440
64 | 4 5217 | .5073 | .02805
36 4 .5349 | .5112 | .04161
16 4 .5634 | .5181 | .06093

41 5 .5600 | .5430 | .06840

Table 3.1.1 PSMGS coefficients for L = 6

3.2 PSMGSS:

In the PSMGSS method we follow the same procedure as for PSMGS; however, the
equations are more complicated. From section 2.2 we see that the recurrence relation

for ML) involves the possibly singular quantity A("l‘l;L)Qg’l—l;L)Ql(,l’l;L)A(”'l’l'l;L)_l.
As for PSMGS, in order to cancel the singular points (z1,z2) = (£1,+£1), and to obey
the PSMG conventional constraint on Q at low frequency, we require the constraints:

(qoy = 2q1y + 2q2y ) (qoy — 2¢1z + 292 ) = 0;
(qoy + 2q1y — 2q2y ) (qoy + 2q1c + 2g2: ) = O;
(qoy — 291y = 2q2y ) (Qoy — 2q1z + 2g2z ) = 0;
(qoy + 201y + 2q2y ) (qoy + 2910 + 2q2 ) = L.



Combining the above 4 equations requires the following constraints on Qg) and Q?(f) :

29’11: = oz t 2q2:1:,
2q2y = Goy + 2quy,
2q2yq1x = 1/16 .

We again optimize the convergence rate (5) as a function of the coefficients goz, goy,
g2y > Z0s and zpy. The optimization program produced the coefficients shown in Tables
3.2.1 and 3.2.2. In Table 3.2.1 we set L = 6 and L,,;, = 5 so that we are performing a
two-grid method, with two semi-coarsening steps between the two grids. In Table 3.2.2 we
have L = 6 and L, = 1 so that we are completing a full PSMGSS sweep; the convergence
rates are naturally somewhat worse than for the two-grid method.

| € I 20y | 20z | qoy I oz l 2y | 'u(L) |
4.00 | .585 | .853 | .5b36 | .737 | .2319 | .0655
3.61 | .597 | .825 | .B37 | .725 | .2273 | .0661
3.24 | .612 | .828 | .b41 | .727 | .2253 | .0668
2.89 | .715 | .842 | .5b48 | .767 | .2179 | .0630
2.56 | .738 | .808 | .550 | .789 | .2128 | .0613
2.25 | .764 | .769 | .550 | .806 | .2054 | .0586
1.96 | .797 | .730 | .548 | .837 | .1956 | .0561
1.69 | .836 | .731 | .553 | .859 | .1867 | .0549
1.44 | .803 | .709 | .b56 | .867 | .1813 | .0571
1.21 | .860 | .717 | .569 | .862 | .1735 | .0601
1.00 | .934 | .677 | .574 | .865 | .163 0674

Table 3.2.1: PSMGSS coefficients for L = 6, L5 = 5

le lazoy |20 |0y |00 | @2y [P |
4.00 | .614 | .875 | .531 | .740 | .227 | .0746
3.61 | .684 | .893 | .536 | .752 | .222 | .0749
3.24 | .701 | .886 | .539 | .754 | .220 | .0715
2.89 | .720 | .863 | .541 | .756 | .216 | .0721
2.56 | .745 | .824 | .542 | .766 | .211 | .0763
2.25 | 775 | .786 | .542 | .782 | .204 | .0782
1.96 | .810 | .750 | .540 | .813 | .194 | .0775
1.69 | .851 | .714 | .528 | .885 | .177 | .0747
1.44 | 794 | 681 | .520 | .926 | .168 | .0739
1.21 | .830 | .675 | .522 | .944 | .158 | .0824
1.00 | .909 | .666 | .534 | .935 | .150 | .0949

Table 3.2.2: PSMGSS coefficients for L = 6, Ly, = 1

4 Results - An Anisotropic Solver

We have combined PSMGS and PSMGSS to build an Anisotropic Solver. We built the solver
to use the coefficient data for PSMGS and PSMGSS given in the tables in section 3. On
the coarsest level we use a 1-d exact solver. This does not obviously provide the absolute
optimal coefficients for every e. Given a fixed ¢ one can of course run the optimization
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program to get the best coefficients for that e, resulting in a convergence rate that is
generally much lower than those presented below.

The solver depends on two parameters, the grid size n and the anisotropy €, and assumes
for simplicity that n = 2° where L is an integer. The solver defines two major cases that
depend on the value of an integer, i, where: 4! < € < 4111,

Case 1: 1 > L i.e. € > n?. We use PSMGS on all coarse grid levels and on the coarsest
level we use a'1-d exact solver.

Case 2: i < L i.e. € < n®. We use PSMGS for the first ¢ levels and then use PSMGSS
for the remaining levels.

As test data, we have taken u to be random and f to be either random or zero. The
case f = 0 is particularly convenient as it allows iteration to continue down to machine
accuracy rather than round-off accuracy.

We have measured performance for values of € ranging from 1 to 2!® = 262144, and grid
sizes n ranging from 2% to 21°. The worst convergence rate achieved was lower than .12. A
subset of the results are shown in Table 4.1 for the range of values 4° < ¢ < 4% and L = 6,
in order to demonstrate the effectiveness of the solver for values of € between powers of 4.

[« O« O] « ] « 7]
1024 | .119 || 1600 | .089 || 2304 | .058 |} 3136 | .055
1089 | .118 || 1681 | .089 || 2401 | .058 || 3249 | .050
1156 | .101 || 1764 | .083 || 2500 | .059 || 3364 | .049
1225 | .101 || 1849 | .085 || 2601 | .055 || 3481 | .050
1296 | .102 || 1936 | .067 || 2704 | .052 || 3600 | .050
1369 | .089 || 2025 | .068 || 2809 | .065 || 3721 | .052
1444 | .088 || 2116 | .070 || 2916 | .058 || 3844 | .051
1521 | .087 || 2209 | .058 || 3025 | .051 [| 3969 | .051

Table 4.1: Hybrid Solver convergence rates for L = 6.

5 References

1. P.O. Frederickson and O.A. McBryan, “Parallel Superconvergent Multigrid”, in:
Multigrid Methods: Theory, Applications and Supercomputing, ed. S. McCormick,
Math Applications Series, vol. 110, pp. 195-210, Marcel-Dekker Inc., New York,
1988.

2. P.O. Frederickson and O.A. McBryan,“Normalized Convergence Rates for the PSMG
Method”, STAM Journal on Scientific and Statistical Computing, Vol. 12, No. 1, pp.
221-229, January 1991.

3. P.O. Frederickson and O.A. McBryan,“Recent Developments for the PSMG Multiscale
Method”, in Multigrid Methods III, eds. W. Hackbusch and U. Trottenberg, ISNM
No. 98, Birkhauser Verlag, Basel 1991.

4. W. Hackbusch and U. Trottenberg (eds.): Multigrid Methods. Proceedings of the
conference held at Kéln-Porz, November 23-27, 1981. Lecture Notes in Mathematics
Vol. 960, Springer, Berlin, 1982.

5. A. Brandt, : Multigrid techniques 1984 guide with applications to fluid dynamics.
GMD-Studie Nr. 85, 1984.






ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.



